Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Commun ; 13(1): 6806, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117247

ABSTRACT

Our knowledge of the role of the gut microbiome in acute coronavirus disease 2019 (COVID-19) and post-acute COVID-19 is rapidly increasing, whereas little is known regarding the contribution of multi-kingdom microbiota and host-microbial interactions to COVID-19 severity and consequences. Herein, we perform an integrated analysis using 296 fecal metagenomes, 79 fecal metabolomics, viral load in 1378 respiratory tract samples, and clinical features of 133 COVID-19 patients prospectively followed for up to 6 months. Metagenomic-based clustering identifies two robust ecological clusters (hereafter referred to as Clusters 1 and 2), of which Cluster 1 is significantly associated with severe COVID-19 and the development of post-acute COVID-19 syndrome. Significant differences between clusters could be explained by both multi-kingdom ecological drivers (bacteria, fungi, and viruses) and host factors with a good predictive value and an area under the curve (AUC) of 0.98. A model combining host and microbial factors could predict the duration of respiratory viral shedding with 82.1% accuracy (error ± 3 days). These results highlight the potential utility of host phenotype and multi-kingdom microbiota profiling as a prognostic tool for patients with COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Feces/microbiology , Post-Acute COVID-19 Syndrome
2.
Nat Commun ; 13(1): 6818, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117855

ABSTRACT

Systemic characterisation of the human faecal microbiome provides the opportunity to develop non-invasive approaches in the diagnosis of a major human disease. However, shared microbial signatures across different diseases make accurate diagnosis challenging in single-disease models. Herein, we present a machine-learning multi-class model using faecal metagenomic dataset of 2,320 individuals with nine well-characterised phenotypes, including colorectal cancer, colorectal adenomas, Crohn's disease, ulcerative colitis, irritable bowel syndrome, obesity, cardiovascular disease, post-acute COVID-19 syndrome and healthy individuals. Our processed data covers 325 microbial species derived from 14.3 terabytes of sequence. The trained model achieves an area under the receiver operating characteristic curve (AUROC) of 0.90 to 0.99 (Interquartile range, IQR, 0.91-0.94) in predicting different diseases in the independent test set, with a sensitivity of 0.81 to 0.95 (IQR, 0.87-0.93) at a specificity of 0.76 to 0.98 (IQR 0.83-0.95). Metagenomic analysis from public datasets of 1,597 samples across different populations observes comparable predictions with AUROC of 0.69 to 0.91 (IQR 0.79-0.87). Correlation of the top 50 microbial species with disease phenotypes identifies 363 significant associations (FDR < 0.05). This microbiome-based multi-disease model has potential clinical application in disease diagnostics and treatment response monitoring and warrants further exploration.


Subject(s)
COVID-19 , Microbiota , Humans , COVID-19/diagnosis , Feces , Machine Learning , Post-Acute COVID-19 Syndrome
3.
Gastroenterology ; 162(2): 548-561.e4, 2022 02.
Article in English | MEDLINE | ID: covidwho-1475507

ABSTRACT

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.


Subject(s)
COVID-19/microbiology , Fatty Acids, Volatile/biosynthesis , Gastrointestinal Microbiome/genetics , Immunity/physiology , Isoleucine/biosynthesis , Adult , Biomarkers/blood , Case-Control Studies , Feces/microbiology , Female , Humans , Male , Metagenomics , Middle Aged , Phylogeny , SARS-CoV-2 , Severity of Illness Index
4.
Microbiome ; 9(1): 91, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1183579

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by the enveloped RNA virus SARS-CoV-2 primarily affects the respiratory and gastrointestinal tracts. SARS-CoV-2 was isolated from fecal samples, and active viral replication was reported in human intestinal cells. The human gut also harbors an enormous amount of resident viruses (collectively known as the virome) that play a role in regulating host immunity and disease pathophysiology. Understanding gut virome perturbation that underlies SARS-CoV-2 infection and severity is an unmet need. METHODS: We enrolled 98 COVID-19 patients with varying disease severity (3 asymptomatic, 53 mild, 34 moderate, 5 severe, 3 critical) and 78 non-COVID-19 controls matched for gender and co-morbidities. All subjects had fecal specimens sampled at inclusion. Blood specimens were collected for COVID-19 patients at admission to test for inflammatory markers and white cell counts. Among COVID-19 cases, 37 (38%) patients had serial fecal samples collected 2 to 3 times per week from time of hospitalization until after discharge. Using shotgun metagenomics sequencing, we sequenced and profiled the fecal RNA and DNA virome. We investigated alterations and longitudinal dynamics of the gut virome in association with disease severity and blood parameters. RESULTS: Patients with COVID-19 showed underrepresentation of Pepper mild mottle virus (RNA virus) and multiple bacteriophage lineages (DNA viruses) and enrichment of environment-derived eukaryotic DNA viruses in fecal samples, compared to non-COVID-19 subjects. Such gut virome alterations persisted up to 30 days after disease resolution. Fecal virome in SARS-CoV-2 infection harbored more stress-, inflammation-, and virulence-associated gene encoding capacities including those pertaining to bacteriophage integration, DNA repair, and metabolism and virulence associated with their bacterial host. Baseline fecal abundance of 10 virus species (1 RNA virus, pepper chlorotic spot virus, and 9 DNA virus species) inversely correlated with disease COVID-19 severity. These viruses inversely correlated with blood levels of pro-inflammatory proteins, white cells, and neutrophils. Among the 10 COVID-19 severity-associated DNA virus species, 4 showed inverse correlation with age; 5 showed persistent lower abundance both during disease course and after disease resolution relative to non-COVID-19 subjects. CONCLUSIONS: Both enteric RNA and DNA virome in COVID-19 patients were different from non-COVID-19 subjects, which persisted after disease resolution of COVID-19. Gut virome may calibrate host immunity and regulate severity to SARS-CoV-2 infection. Our observation that gut viruses inversely correlated with both severity of COVID-19 and host age may partly explain that older subjects are prone to severe and worse COVID-19 outcomes. Altogether, our data highlight the importance of human gut virome in severity and potentially therapeutics of COVID-19. Video Abstract.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Child, Preschool , DNA , Gastrointestinal Microbiome/genetics , Humans , RNA , SARS-CoV-2 , Virome
5.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3804749

ABSTRACT

Background: Extracorporeal membrane oxygenation (ECMO) is a rapidly evolving therapy for acute lung and/or heart failure. However, information on the application of ECMO in severe coronavirus disease 2019 (COVID-19) is limited, such as the initiation time, especially in the ECMO instrument shortages period and regions, not all the listed patients could be treated with ECMO in time. This study aims to investigate and clear the timing of ECMO initiation related to the prognosis of severe COVID-19 patients. And emphasize the initiation time of ECOM application no more than 24 hours, when the ECMO completion trigger is tripped.Methods: In this retrospective, multi-center cohort study, we enrolled all ECMO patients with confirmed COVID-19 at three hospitals between Dec 29, 2019 and Apr 5, 2020. Demographic data, clinical presentation, laboratory profile, clinical course, treatments, complications and outcomes were collected. The primary outcomes were analyzed by ECMO weaning rate and 60-day mortality after ECMO.Results: A total of 31 patients were included in the analysis, 60-day mortality rate after ECMO was 71% and ECMO weaning rate was 26%. Due to ECMO instrument shortages, patients were divided into delayed ECMO groups (3 [IQR, 2-5] days) and early ECMO groups (0.5 [IQR, 0-1] days) based on the initiation time of ECMO. There were 14 patients in the early treatment group and 17 patients in the delayed group. Early initiation of ECMO was associated with decreased 60-day mortality after ECMO (50% vs. 88%, P=0.044) and increased ECMO weaning rate (50% vs. 6%, P=0.011).Conclusions: In the ECMO supported COVID-19 patients, delayed initiation of ECMO is a risk factor and associated with a poorer prognosis for these patients.Trial Registration: Chinese Clinical Trial Registry identifier: ChiCTR2000030947.Funding Statement: Not applicable.Declaration of Interests: The authors declare that they have no competing interests.Ethics Approval Statement: The study was approved by Jinyintan Hospital ethics board.


Subject(s)
COVID-19 , Heart Failure
6.
Gut ; 70(4): 698-706, 2021 04.
Article in English | MEDLINE | ID: covidwho-1024254

ABSTRACT

OBJECTIVE: Although COVID-19 is primarily a respiratory illness, there is mounting evidence suggesting that the GI tract is involved in this disease. We investigated whether the gut microbiome is linked to disease severity in patients with COVID-19, and whether perturbations in microbiome composition, if any, resolve with clearance of the SARS-CoV-2 virus. METHODS: In this two-hospital cohort study, we obtained blood, stool and patient records from 100 patients with laboratory-confirmed SARS-CoV-2 infection. Serial stool samples were collected from 27 of the 100 patients up to 30 days after clearance of SARS-CoV-2. Gut microbiome compositions were characterised by shotgun sequencing total DNA extracted from stools. Concentrations of inflammatory cytokines and blood markers were measured from plasma. RESULTS: Gut microbiome composition was significantly altered in patients with COVID-19 compared with non-COVID-19 individuals irrespective of whether patients had received medication (p<0.01). Several gut commensals with known immunomodulatory potential such as Faecalibacterium prausnitzii, Eubacterium rectale and bifidobacteria were underrepresented in patients and remained low in samples collected up to 30 days after disease resolution. Moreover, this perturbed composition exhibited stratification with disease severity concordant with elevated concentrations of inflammatory cytokines and blood markers such as C reactive protein, lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyl transferase. CONCLUSION: Associations between gut microbiota composition, levels of cytokines and inflammatory markers in patients with COVID-19 suggest that the gut microbiome is involved in the magnitude of COVID-19 severity possibly via modulating host immune responses. Furthermore, the gut microbiota dysbiosis after disease resolution could contribute to persistent symptoms, highlighting a need to understand how gut microorganisms are involved in inflammation and COVID-19.


Subject(s)
Bacteria , COVID-19 , Dysbiosis , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract , Immunity , SARS-CoV-2 , Adult , Bacteria/genetics , Bacteria/immunology , Bacteria/isolation & purification , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Cytokines/analysis , DNA, Bacterial/isolation & purification , Dysbiosis/epidemiology , Dysbiosis/etiology , Dysbiosis/immunology , Dysbiosis/virology , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology , Hong Kong , Humans , Male , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Transferases/analysis
7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-112099.v1

ABSTRACT

Background. Since 2020 COVID-19 pandemic became an emergent public sanitary incident. The epidemiology data and the impact on prognosis of secondary infection in severe and critical COVID-19 patients in China remained largely unclear.Methods. We retrospectively reviewed medical records of all adult patients with laboratory-confirmed COVID-19 who were admitted to ICUs from January 18th 2020 to April 26th 2020 at two hospitals in Wuhan, China and one hospital in Guangzhou, China. We measured the frequency of bacteria and fungi cultured from respiratory tract, blood and other body fluid specimens. The risk factors for and impact of secondary infection on clinical outcomes were also assessed. Results. Secondary infections were very common (86.6%) when patients were admitted to ICU for >72 hours. The majority of infections were respiratory, with the most common organisms being Klebsiella pneumoniae (24.5%), Acinetobacter baumannii (21.8%), Stenotrophomonas maltophilia (9.9%), Candida albicans (6.8%), and Pseudomonas spp. (4.8%). Furthermore, the proportions of multidrug resistant (MDR) bacteria and carbapenem resistant Enterobacteriaceae (CRE) were high. We also found that age ≥60 years and mechanical ventilation ≥13days independently increased the likelihood of secondary infection. Finally, patients with positive cultures had reduced ventilator free days in 28 days and patients with CRE and/or MDR bacteria positivity showed lower 28 day survival rate.Conclusions. In a retrospective cohort of severe and critical COVID-19 patients admitted to ICUs in China, the prevalence of secondary infection was high, especially with CRE and MDR bacteria, resulting in poor clinical outcomes.


Subject(s)
Coinfection , Klebsiella Infections , Tuberculosis, Multidrug-Resistant , COVID-19 , Enterobacteriaceae Infections
8.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3678579

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19) caused by the enveloped RNA virus SARS-CoV-2 primarily affects the respiratory and gastrointestinal tracts.SARS-CoV-2 was isolated from faecal samples and active viral replication was reported in human intestinal cells. The human gut also harbors an enormous amount of resident viruses (collectively known as virome) that play a role in regulating host immunity and pathophysiology.Understanding gut virome perturbation that underlies SARS-CoV-2 infection and severity is an unmet need.Methods: We enrolled 98 COVID-19 patients with varying disease severity (3 asymptomatic, 53 mild, 34 moderate, 5 severe, 3 critical) and 78 non-COVID-19 controls matched for gender and co-morbidities. All study subjects had faecal specimens sampled at inclusion. Blood specimens were sampled for COVID-19 patients at admission to test for inflammatory markers and white cell counts. Among COVID-19 cases, 37 (38%) patients had serially faecal samples collected 2 to 3 times per week from time of hospitalization until after discharge. Using shotgun metagenomics sequencing, we sequenced and profiled the faecal RNA and DNA virome respectively. We investigated alterations and longitudinal dynamics of the gut virome in association with disease severity and blood parameters.Findings: Patients with COVID-19 showed underrepresentation of P epper mild mottle virus (RNA virus) and multiple bacteriophage lineage s (DNA viruses) and enrichment of environment-derived eukaryotic DNA viruses in faecal samples, compared to non-COVID-19 subjects. Such gut virome dysbiosis persisted up to 30 days after disease resolution. Faecal virome in SARS-CoV-2 infection harboured more stress-, inflammation- and virulence-associated gene encoding capacities including those pertaining to bacteriophage integration, DNA repair, and metabolism and virulence associated with their bacterial host. Human faecal baseline abundance of 9 virus species (1 RNA virus, Pepper chlorotic spot virus, and 8 DNA virus species) inversely correlated with disease severity of COVID-19. These viruses were also inversely associated with blood levels of pro-inflammatory proteins, white cells and neutrophils. Among the 9 COVID-19 severity-associated virus species, 4 showed inverse correlation with age; 5 showed persistent lower abundance both during disease course and after disease resolution relative to non-COVID-19 subjects. Interpretation: Both enteric RNA and DNA viromes were perturbed in COVID-19, which prolonged even after disease resolution. Gut virome may calibrate host immunity and regulate severity to SARS-CoV-2 infection. Our observation that gut viruses inversely correlated with both severity of COVID-19 and host age partly explains that older subjects are prone to severe and unfavorable COVID-19 outcomes. Our data altogether highlight the significance of human gut virome in COVID-19 disease course and potentially therapeutics.Funding Statement: This work was supported by The D. H. Chen Foundation, Center for Gut Microbiota Research (Faculty of Medicine, The Chinese University of Hong Kong) and Health and Medical Research Fund (Hong Kong, China).Declaration of Interests: None.Ethics Approval Statement: This study was approved by the Joint Chinese University of Hong Kong–New Territories East Cluster Clinical Research Ethics Committees (Reference number: 2020.076). All subjects provided informed consent to participate in this study and agreed for publication of the research results.


Subject(s)
Metabolic Diseases , Gastrointestinal Neoplasms , COVID-19 , Cluster Headache
9.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-66879.v2

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19) caused by the enveloped RNA virus SARS-CoV-2 primarily affects the respiratory and gastrointestinal tracts. SARS-CoV-2 was isolated from faecal samples and active viral replication was reported in human intestinal cells. The human gut also harbors an enormous amount of resident viruses (collectively known as the virome) that play a role in regulating host immunity and disease pathophysiology. Understanding gut virome perturbation that underlies SARS-CoV-2 infection and severity is an unmet need.Methods: We enrolled 98 COVID-19 patients with varying disease severity (3 asymptomatic, 53 mild, 34 moderate, 5 severe, 3 critical) and 78 non-COVID-19 controls matched for gender and co-morbidities. All subjects had faecal specimens sampled at inclusion. Blood specimens were collected for COVID-19 patients at admission to test for inflammatory markers and white cell counts. Among COVID-19 cases, 37 (38%) patients had serial faecal samples collected 2 to 3 times per week from time of hospitalization until after discharge. Using shotgun metagenomics sequencing, we sequenced and profiled the faecal RNA and DNA virome. We investigated alterations and longitudinal dynamics of the gut virome in association with disease severity and blood parameters.Results: Patients with COVID-19 showed underrepresentation of Pepper mild mottle virus (RNA virus) and multiple bacteriophage lineages (DNA viruses) and enrichment of environment-derived eukaryotic DNA viruses in faecal samples, compared to non-COVID-19 subjects. Such gut virome alterations persisted up to 30 days after disease resolution. Faecal virome in SARS-CoV-2 infection harboured more stress-, inflammation- and virulence-associated gene encoding capacities including those pertaining to bacteriophage integration, DNA repair, and metabolism and virulence associated with their bacterial host. Baseline fecal abundance of 10 virus species (1 RNA virus, Pepper chlorotic spot virus, and 9 DNA virus species) inversely correlated with disease COVID-19 severity. These viruses inversely correlated with blood levels of pro-inflammatory proteins, white cells and neutrophils. Among the 10 COVID-19 severity-associated DNA virus species, 4 showed inverse correlation with age; 5 showed persistent lower abundance both during disease course and after disease resolution relative to non-COVID-19 subjects.Conclusions: Both enteric RNA and DNA virome in COVID-19 patients were different from non-COVID-19 subjects, which persisted after disease resolution of COVID-19. Gut virome may calibrate host immunity and regulate severity to SARS-CoV-2 infection. Our observation that gut viruses inversely correlated with both severity of COVID-19 and host age may partly explain that older subjects are prone to severe and worse COVID-19 outcomes. Altogether our data highlight the importance of human gut virome in severity and potentially therapeutics of COVID-19.


Subject(s)
COVID-19 , Inflammation
10.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-50431.v1

ABSTRACT

Background: Since the clinical correlates, prognosis and determinants of AKI in patients with Covid-19 remain largely unclear, we perform a retrospective study to evaluate the incidence, risk factors and prognosis of AKI in severe and critically ill patients with Covid-19.Methods: We reviewed medical records of all adult patients (>18 years) with laboratory-confirmed Covid-19 who were admitted to the intensive care unit (ICU) between January 23rd 2020 and April 6th 2020 at Wuhan JinYinTan Hospital and The First Affiliated Hospital of Guangzhou Medical University. The clinical data, including patient demographics, clinical symptoms and signs, laboratory findings, treatment [including respiratory supports, use of medications and continuous renal replacement therapy (CRRT)] and clinical outcomes, were extracted from the electronic records, and we access the incidence of AKI and the use of CRRT, risk factors for AKI, the outcomes of renal diseases, and the impact of AKI on the clinical outcomes.Results: Among 210 subjects, 131 were males (62.4%). The median age was 64 years (IQR: 56-71). Of 92 (43.8%) patients who developed AKI during hospitalization, 13 (14.1%), 15 (16.3%) and 64 (69.6%) patients were classified as stage 1, 2 and 3, respectively. 54 cases (58.7%) received CRRT. Age, sepsis, Nephrotoxic drug, IMV and elevated baseline Scr were associated with AKI occurrence. The renal recover during hospitalization among 16 AKI patients (17.4%), who had a significantly shorter time from admission to AKI diagnosis, lower incidence of right heart failure and higher P/F ratio. Of 210 patients, 93 patients deceased within 28 days of ICU admission. AKI stage 3, critical disease, greater age and minimum P/F <150mmHg independently associated with it.Conclusions: Among patients with Covid-19, the incidence of AKI was high. age , sepsis, nephrotoxic drug, IMV and baseline Scr were strongly associated with the development of AKI. Time from admission to AKI diagnosis, right heart failure and P/F ratio were independently associated with the potential of renal recovery. Finally, AKI KIDGO stage 3 independently predicted the risk of death within 28 days of ICU admission.


Subject(s)
Heart Failure , Critical Illness , Sepsis , Kidney Diseases , COVID-19
12.
Gastroenterology ; 159(3): 944-955.e8, 2020 09.
Article in English | MEDLINE | ID: covidwho-324569

ABSTRACT

BACKGROUND & AIMS: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects gastrointestinal tissues, little is known about the roles of gut commensal microbes in susceptibility to and severity of infection. We investigated changes in fecal microbiomes of patients with SARS-CoV-2 infection during hospitalization and associations with severity and fecal shedding of virus. METHODS: We performed shotgun metagenomic sequencing analyses of fecal samples from 15 patients with Coronavirus Disease 2019 (COVID-19) in Hong Kong, from February 5 through March 17, 2020. Fecal samples were collected 2 or 3 times per week from time of hospitalization until discharge; disease was categorized as mild (no radiographic evidence of pneumonia), moderate (pneumonia was present), severe (respiratory rate ≥30/min, or oxygen saturation ≤93% when breathing ambient air), or critical (respiratory failure requiring mechanical ventilation, shock, or organ failure requiring intensive care). We compared microbiome data with those from 6 subjects with community-acquired pneumonia and 15 healthy individuals (controls). We assessed gut microbiome profiles in association with disease severity and changes in fecal shedding of SARS-CoV-2. RESULTS: Patients with COVID-19 had significant alterations in fecal microbiomes compared with controls, characterized by enrichment of opportunistic pathogens and depletion of beneficial commensals, at time of hospitalization and at all timepoints during hospitalization. Depleted symbionts and gut dysbiosis persisted even after clearance of SARS-CoV-2 (determined from throat swabs) and resolution of respiratory symptoms. The baseline abundance of Coprobacillus, Clostridium ramosum, and Clostridium hathewayi correlated with COVID-19 severity; there was an inverse correlation between abundance of Faecalibacterium prausnitzii (an anti-inflammatory bacterium) and disease severity. Over the course of hospitalization, Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides massiliensis, and Bacteroides ovatus, which downregulate expression of angiotensin-converting enzyme 2 (ACE2) in murine gut, correlated inversely with SARS-CoV-2 load in fecal samples from patients. CONCLUSIONS: In a pilot study of 15 patients with COVID-19, we found persistent alterations in the fecal microbiome during the time of hospitalization, compared with controls. Fecal microbiota alterations were associated with fecal levels of SARS-CoV-2 and COVID-19 severity. Strategies to alter the intestinal microbiota might reduce disease severity.


Subject(s)
Betacoronavirus , Coronavirus Infections/microbiology , Dysbiosis/virology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Pneumonia, Viral/microbiology , Adult , Aged , COVID-19 , Female , Gastrointestinal Tract/microbiology , Hong Kong/epidemiology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Pandemics , Pilot Projects , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL